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Abstract

Named entity recognition (NER) is the very

first step in the linguistic processing of any

new domain. It is currently a common pro-

cess in BioNLP on English clinical text. How-

ever, it is still in its infancy in other ma-

jor languages, as it is the case for Spanish.

Presented under the umbrella of the PHAR-

MACONER shared task, this paper describes

a very simple method for the annotation and

normalization of pharmacological, chemical

and, ultimately, biomedical named entities in

clinical cases. The system developed for the

shared task is based on limited knowledge,

collected, structured and munged in a way that

clearly outperforms scores obtained by sim-

ilar dictionary-based systems for English in

the past. Along with this recovering of the

knowledge-based methods for NER in subdo-

mains, the paper also highlights the key con-

tribution of resource-based systems in the val-

idation and consolidation of both the annota-

tion guidelines and the human annotation prac-

tices. In this sense, some of the authors dis-

coverings on the overall quality of human an-

notated datasets question the above-mentioned

‘official’ results obtained by this system, that

ranked second (0.91 F1-score) and first (0.916

F1-score), respectively, in the two PHARMA-

CONER subtasks.

1 Introduction

Named Entity Recognition (NER) is considered a

necessary first step in the linguistic processing of

any new domain, as it facilitates the development

of applications showing co-occurrences of domain

entities, cause-effect relations among them, and,

∗This paper should have been published in the Proceed-
ings of the 5th Workshop on BioNLP Shared Tasks. Unfor-
tunately, due to their complete lack of funding, the authors
could not afford the registration fees, a mandatory expense
for a contribution to be published in the aforementioned pro-
ceedings.

eventually, it opens the (still to be reached) pos-

sibility of understanding full text content. On

the other hand, Biomedical literature and, more

specifically, clinical texts, show a number of fea-

tures as regards NER that pose a challenge to NLP

researchers (Cohen and Demner-Fushman, 2014):

(1) the clinical discourse is characterized by being

conceptually very dense; (2) the number of dif-

ferent classes for NEs is greater than traditional

classes used with, for instance, newswire text; (3)

they show a high formal variability for NEs (ac-

tually, it is rare to find entities in their “canoni-

cal form”); and, (4) this text type contains a great

number of ortho-typographic errors, due mainly to

time constraints when drafted.

Many ways to approach NER for biomedical lit-

erature have been proposed, but they roughly fall

into three main categories: rule-based, dictionary-

based (sometimes called knowledge-based) and

machine-learning based solutions. Tradition-

ally, the first two approaches have been the

choice before the availability of Human Annotated

Datasets (HAD), albeit rule-based approaches re-

quire (usually hand-crafted) rules to identify terms

in the text, while dictionary-based approaches

tend to miss medical terms not mentioned in

the system dictionary (Rebholz-Schumann et al.,

2011). Nonetheless, with the creation and

distribution of HAD as well as the develop-

ment and success of supervised machine learn-

ing methods, a plethora of data-driven approaches

have emerged —from Hidden Markov Models

(HMMs) (Ephraim, 2002), Support Vector Ma-

chines (SVMs) (Habib and Kalita, 2010) and Con-

ditional Random Fields (CRFs) (He and Kayaalp,

2008), to, more recently, those founded on neu-

ral networks (Armengol-Estapé et al., 2019). This

fact has had an impact on knowledge-based meth-

ods, demoting them to a second plane. Besides,

this situation has been favoured by claims on the

http://arxiv.org/abs/1912.09152v1


uselessness of gazetteers for NER in, for example,

Genomic Medicine (GM), as it was suggested by

Cohen and Demner-Fushman (2014, p. 26):

One of the findings of the first BioCre-

ative shared task was the demonstration

of the long-suspected fact that gazetteers

are typically of little use in GM.

Although one might think that this view could

strictly refer to the subdomain of GM and to

the past —BioCreative I was a shared task

held back in 2004—, we can still find similar

claims today, not only referred to rule-based and

dictionary-based methods, but also to stochastic

ones (Armengol-Estapé et al., 2019).

In this paper, in spite of previous statements,

we present a system that uses rule-based and

dictionary-based methods combined (in a way

we prefer to call resource-based). Our final

goals in the paper are two-fold: on the one

hand, to describe our system, developed for

the PHARMACONER shared task1, dealing with

the annotation of some of the NEs in health

records (namely, pharmacological, chemical and

biomedical entities) using a revisited version of

rule- and dictionary-based approaches; and, on

the other hand, to give pause for thought about the

quality of datasets (and, thus, the fairness) with

which systems of this type are evaluated, and to

highlight the key role of resource-based systems

in the validation and consolidation of both the

annotation guidelines and the human annotation

practices.

In section 2, we describe our initial resources

and explain how they were built, and try to address

the issues posed by features (1) and (2) above.

Section 3 depicts the core of our system and the

methods we have devised to deal with text features

(3) and (4). Results obtained in PHARMACONER by

our system are presented in section 4. Section 5

details some of our errors, but, most importantly,

focusses on the errors and inconsistencies found

in the evaluation dataset, given that they may shed

doubts on the scores obtained by any system in the

competition. Finally, we present some concluding

remarks in section 6.

1
http://temu.bsc.es/pharmaconer/

2 Resource building

As it is common in resource-based system de-

velopment, special effort has been devoted to the

creation of the set of resources used by the sys-

tem. These are mainly two —a flat subset of the

SNOMED CT medical ontology2 , and the library

and a part of the contextual regexp grammars de-

veloped by Sánchez-León (2018) for a previous

competition on abbreviation resolution in clinical

texts written in Spanish. The process of creation

and/or adaptation of these resources is described

in this section.

2.1 SNOMED CT

Although the competition proposes two differ-

ent scenarios, in fact, both are guided by the

SNOMED CT ontology —for subtask 1, entities

must be identified with offsets and mapped to

a predefined set of four classes (PROTEINAS,

NORMALIZABLES, NO NORMALIZABLES and

UNCLEAR); for subtask 2, a list of all SNOMED CT

IDs (sctid) for entities occurring in the text must be

given, which has been called concept indexing by

the shared task organizers3. Moreover, PHARMA-

CONER organizers decided to promote SNOMED

CT substance IDs over product, procedure or other

possible interpretations also available in this medi-

cal ontology for a given entity. This selection must

be done even if the context clearly refers to a dif-

ferent concept, according to the annotation guide-

lines4 (henceforth, AnnotGuide) and the praxis.

Finally, PROTEINAS is ranked as the first choice

for substances in this category.

These previous decisions alone on the part of

the organizers greatly simplify the task at hand,

making it possible to build (carefully compiled)

subsets of the entities to be annotated. This is

a great advantage over open domain NER, where

(like in GM) the texts may contain an infinite (and

very creative indeed) number of NEs. For clinical

cases, although the NE density is greater, there ex-

ist highly structured terminological resources for

the domain. Moreover, the set of classes to use

2From https://browser.ihtsdotools.org/.
3In the train+dev datasets, only 17 of the PROTEINAS

(‘proteins’) and NORMALIZABLES (‘standardizable’) enti-
ties have an ID not in the SNOMED CT ontology. Besides,
just 40 out of 5,615 annotations —not taking into account
the class UNCLEAR, which is not considered for the sys-
tem evaluation— are tagged as NO NORMALIZABLES (‘non
standardizable’), many of them due to the fact that they in-
clude elliptical constructions.

4
https://bit.ly/2qxofgd, p. 4.

http://temu.bsc.es/pharmaconer/
https://browser.ihtsdotools.org/
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in the annotation exercise for subtask 1 has been

dramatically cut down by the organizers.

With the above-mentioned initial constraints in

mind, we have painstakingly collected, from the

whole set of SNOMED CT terms, instances of en-

tities as classified by the human annotators in

the datasets released by the organizers and, when

browsing the SNOMED CT web version, we have

tried to use the ontological hierarchical relations

to pull a complete class down from SNOMED

CT. This way, we have gathered 80 classes —

from lipids to proteins to peptides or peptide hor-

mones, from plasminogen activators to dyes to

drugs or medicaments—, that have been arranged

in a ranked way so as to mimic human annota-

tors choices5. The number of entities so collected

(henceforth, ‘primary entities’) is 51,309.

2.2 Contextual regexp grammars

Some of the entities to be annotated, specially

those in abbreviated form, are ambiguous without

a context. This is the case, for instance, of PCR,

whose expanded forms are (among other mean-

ings; we use only English expanded forms) ‘reac-

tive protein c’, ‘polymerase chain reaction’, ‘car-

diorespiratory arrest’. In order to deal with these

cases, we use a contextual regexp rule system with

a lean and simple rule formalism previously de-

veloped (Sánchez-León, 2018). As an exemplifi-

cation, we include one rule to deal with one of the

cases of the preceeding ambiguity:

b:[il::bioquı́mica|en sangre|hemoglobina|

hemograma|leucocit|parásito|plaqueta|

prote.na|recuento|urea] - [PCR] - >

[m=proteı́na]

A rule has a left hand side (LHS) and a right

hand side (RHS). There is a focus in the LHS

(PCR, within dashes) and a left and right context

(that may be empty). When the left context in-

cludes a b: (like in this case), it indicates ei-

ther left or right context. The words in the con-

text can take other qualifiers —in this case, the

matching will be case insensitive (i to the left of

bioquı́mica) and local (l), which means the

disjunction of words and/or stems can be found

in a distance of 40 characters (this can be modifi-

fied by the user). Hence, the rule applies, selecting

the proteı́na expansion (in RHS) of PCR if any

of the words/stems specified as local context (40

5Note that we have gathered the complete set of medical
terms included in SNOMED CT, but, for the purpose of this
shared task, we only use a subset of it.

chars maximum) is matched either to the left or

right of the focus term (which is usually an abbre-

viation).

With no tweaking at all for the datasets in PHAR-

MACONER competition, the system annotates cor-

rectly 18 out of 20 occurrences of PCR in the test

dataset (a precision of 0.9)6.

This component of the system is important be-

cause, only when the previous abbreviation is ex-

panded as the first string (that of a protein name),

it must be annotated, according to the AnnotGuide.

The same ambiguity happens with Cr, which may

mean ‘creatinine’ or ‘chrome’7. These expansions

are both NORMALIZABLES, but, obviously, their

sctid is different.

The system currently uses 104 context rules,

only for abbreviations and acronyms in the clin-

ical cases. These rules, contrary to what is com-

monly referred in the biomedical processing lit-

erature (Armengol-Estapé et al., 2019), do not re-

quire a special domain knowledge (none of the au-

thors do have it) and can be written, most of the

times, in a very straightforward way in the formal-

ism briefly described above.

3 Development

In general, dictionary-based methods rely on strict

string matching over a fixed set of lexical entries

from the domain. This is clearly insufficient to

deal with non-canonical linguistic forms of NEs as

used in clinical texts. For this reason, we have de-

vised two different solutions to this shortcoming.

In the first place, we have munged a great num-

ber of our primary entities, in a way similar to that

described in Sánchez-León (2019) for gazetteers

used for protected information anonymization in

clinical texts. We basically transform canonical

forms in other possible textual forms observed

when working with biomedical texts. With such

transformations, a system module converts a salt

compound like clorhidrato de ciclopentolato into

ciclopentolato clorhidrato, or simply the PP de

potasio into its corresponding adjective potásico.

Other, more complex conversions include the

treatment of antibodies —for instance anticuerpo

contra especie de Leishmania becomes ac. Leish-

6Note that 2 of the PCR occurrences in the train+dev
datasets have been incorrectly mapped to the protein interpre-
tation (file S1130-63432014000100012-1, 2 times).

7Again, one of the occurrences of Cr has been
incorrectly mapped to the former extended form (file
S0212-16112012000500042-1).



mania, among other variants—, or pairs of antibi-

otics normally prescribed together —which have

a unique sctid and whose order we handle just as

the ‘glueing’ characters. Note, incidentally, that,

while the input to this pre-processing step is al-

ways a string, the output can be a regular expres-

sion, that is linked to a sctid. Plural forms are also

generated through this module, that uses 45 trans-

formations (not all equally productive). Using

these transformation rules, we produce 139,150

‘secondary entities’, many of them regexps. As

a final (simple) example of this, consider the en-

tity antı́geno CD13: after applying one of the pre-

vious string-to-regexp transformations, it is con-

verted to:

(?:antı́geno )?CD[- ]?13

With the previous regexp, the system is able

to identify (and string-normalize) six different

textual realizations of the same unique SNOMED

CT term. There are more complex rules that,

thus, produce many more potential strings. The

important thing with this strategy is that through

the generative power of these predictably-created

regexps from SNOMED CT entities the system is

able to improve its recall and overcome the limi-

tations of traditional dictionary-based approaches.

Secondly, to tackle with careless drafting

of clinical reports, a Levenshtein edit distance

library8 is used on the whole background dataset.

The process is run once, using our secondary enti-

ties as lexicon9 and a general vocabulary lexicon

to rule out common words in the candidate search

process. We have used distances in the range 1-3

(depending on string length) for sequences up to

8We use Text::Levensthtein::Flexible

library, from Perl ecosystem. One of the anonymous
reviewers has shed doubts about the use of Perl as a
language for “NLP and text-mining nowadays”. In this
respect, we are not committed with a given programming
language more than we are with our native language —and
we have submitted our paper in English, a foreign language
for us. The system could have been implemented in any other
programming language more popular “nowadays”, provided
that we were as proficient in it as we are in Perl and the
language used were as efficient in string and regexp handling
and in I/O operations as Perl is. In this regard, the most
popular language nowadays —Python— is 2 to 10 times
slower for these particular features. Perl is even faster for
regexp processing than Python PyPy —see, for instance,
https://github.com/mariomka/regex-benchmark.
Idiomatic Perl is even faster. Finally, Perl has a long
tradition in biology and medicine text processing.

9With enumeration of strings from non-infinite-loop reg-
exps.

3 words long10. The output of this process, which

links forms with spelling errors with canonical

ones and, thus, to sctids, can be inspected prior to

its inclusion in the system lexicon, if so desired.

3.1 Annotation process

As such, the annotation process is very simple.

The program reads the input byte stream trying to

identify known entities by means of a huge reg-

exp built through the pre-processing of the avail-

able resources. If the candidate entity is ambigu-

ous and (at least) one contextual rule exists for

it, it is applied. For the rest of the NEs, the sys-

tem assigns them the class and sctid found in our

ranked in-memory lexicon. As already mentioned

in passing, the system does not tokenize text prior

to NER, a processing order that we consider the

right choice for highly entity-dense texts. The

data structures built during pre-processing are ef-

ficiently stored on disk for subsequent runs, so the

pre-processing is redone only when resources are

edited.

4 Results

According to the organizers, and taking into ac-

count the HA of the tiny subset from the back-

ground dataset released to the participants11 , the

system obtained the scores presented in table 1,

ranking as second best system for subtask1 and

best system for subtask2 (Gonzalez-Agirre et al.,

2019).12.

Our results are consistent with our poor under-

standing of the classes for subtask 1. Having a

null knowledge of Pharmacology, Biomedicine or

even Chemistry, assigning classes (as requested

for subtask 1) to entities is very hard, while

10These words are not isolated from the byte stream, and
the process uses textual anchors to delimit them as word can-
didates. Consequently, no proper tokenization is performed.

11When compared with the rest of the tasks in BioNLP-
OST 2019, the time given to PHARMACONER participants to
submit their system runs is 4 times longer than the mean —
longer time that is unnecessary if system is mature enough.
On the other hand, the dataset released for evaluation pur-
poses is more than 4 times larger than the mean. As a con-
sequence, participating groups have to annotate full domain
corpora rather than just test dataset(s). A shorter submission
period and a smaller test dataset would be preferable, and be-
sides fairer, in future calls.

12The authors have been unable to obtain these
results with the official script, downloaded from
https://github.com/PlanTL-SANIDAD/PharmaCoNER-CODALAB-Evaluation-Script.
In their execution of the evaluation script, system results are
better (?).

https://github.com/mariomka/regex-benchmark
https://github.com/PlanTL-SANIDAD/PharmaCoNER-CODALAB-Evaluation-Script


Precision Recall F1-score

Subtask 1 0.90625 0.91314 0.90968

Subtask 2 0.91108 0.92083 0.91593

Table 1: Results for PHARMACONER test dataset (both

subtasks)

providing a sctid (subtask 2) seems an easier goal.

We will explain the point with an example entity

—ácido hialurónico (‘hyaluronic acid’). Using

the ontological structure of SNOMED CT, one

can find the following parent relations (just in

English):

hyaluronic acid IS-A mucopolysaccharide

IS-A protein

The authors have, in this case, promoted the

PROTEINAS annotation for this entity, disre-

garding its interpretation as a replacement agent

and overlooking a recommendation on polysac-

charides in the AnnotGuide. Fortunately, all its

interpretations share a unique sctid. The same may

be true for

haemosiderin IS-A protein

which is considered NORMALIZABLE in the test

dataset. Similar cases are responsible for the

lower performance on subtask 1 with respect to

the more complex subtask 2.

In spite of these human classification errors,

our system scores outperform those obtained by

PharmacoNER Tagger13 (Armengol-Estapé et al.,

2019), a simpler system using a binary classifica-

tion and a very different organization of the dataset

with a smaller fragment for test (10% of the data

as opposed to 25% for the official competition). In

fact, our system improves their F1-score (89.06)

by 1.3 points when compared with our results for

the more complex PHARMACONER subtask 1.

5 Discussion

In this section, we perform error analysis for our

system run on the test dataset. We will address

both recall and precision errors, but mainly

concentrate on the latter type, and on a thorough

13The tagger authors, some of them also organizers of
shared task, have changed the casing of the name for the pro-
gram.

revision of mismatches between system and

human annotations.

In general, error analysis is favoured by

knowledge-based methods, since it is through the

understanding of the underlying reasons for an er-

ror that the system could be improved. More-

over, and differently to what happens with the

current wave of artificial neural network methods,

the whole annotation process —its guidelines for

human annotators, the collection and appropriate

structuring of resources, the adequate means to as-

sign tags to certain entities but not to other, simi-

lar or even pertaining to the same class— must be

clearly understood by the designer/developer/data

architect of such systems. As a natural conse-

quence of this attempt to mimick a task defined

by humans to be performed, in the first place, also

by humans, some inconsistencies, asystematic or

missing assignments can be discovered, and this

information is a valuable treasure not only for sys-

tem developers but also for task organizers, guide-

line editors and future annotation campaigns, not

to mention for the exactness of program evaluation

results.

Most of the error types made by the system (i.e.,

by the authors) in class assignment for subtask 1

have already been discussed. In the same vein, as

regards subtask 2, a great number of errors come

from the selection of the ‘product containing sub-

stance’ reading from SNOMED CT rather to the

‘substance’ itself. This is due to inexperience of

the authors on the domain and the wrong consider-

ation of context when tagging entities —the latter

being clearly obviated in the AnnotGuide.

In the following paragraphs, some of the most

relevant inconsistencies found when performing

error analysis of our system are highlighted. The

list is necessarily incomplete due to space con-

straints, and it is geared towards the explanation

of our possible errors.

5.1 Inconsistency in the AG

Among some of the paradoxical examples in the

AnnotGuide it stands out the double explicit con-

sideration of gen (‘gene’), when occurs alone in

context, as both an entity to be tagged (positive

rule P2 of the AnnotGuide) and a noun not to be

tagged (negative rule N2). This inconsistency (and

a bit of bad luck) has produced that none of the

6 occurrences as an independent noun —not in-



troducing an entity— is tagged in the train+dev

(henceforth, t+d) while the only 2 in the same con-

text in the test dataset have been tagged. This

amounts for 2 true negatives (TNs) for the evalu-

ation script.

5.2 Inconsistency in HA as regards AG

The AnnotGuide proposal for the treatment of el-

liptical elements is somewhat confusing. For these

cases, a longest match annotation is proposed,

which is difficult to replicate automatically and

not easy to remember for the human annotator. In

many contexts, the annotator has made the right

choice —for instance, in receptores de estrógeno

y de progesterona— whereas in others do not —

|anticuerpos anticardiolipina| |IgG| e |IgM|, with

‘|’ marking the edges of the annotations. The last

example occurs twice in the test dataset. Hence,

the disagreement counts as 6 TNs and 2 false pos-

itives (FPs)14.

On the other hand, there is a clear reference to

food materials and nutrition in the AnnotGuide,

where they are included in the class of substances.

However, none of the following entities is tagged

in the test dataset: azúcar (which is mandatory

according to AnnotGuide and was tagged in t+d;

1 FP); almidón de maı́z (also mandatory in An-

notGuide; 1 FP); and Loprofı́n, Aglutella, Aproten

(hypoproteic nutrition products, 3 FPs in total)15.

There is an explicit indication in the Annot-

Guide to annotate salts, with the example iron

salts. However, in the context sales de litio

(‘lithium salts’), only the chemical element has

been tagged (1 FP
16).

There exist other differing-span mismatches be-

tween human and automatic annotation. These

include anticuerpos anticitoplasma de neutrófilo,

where the HA considers the first two words only (in

one of the occurrences, 1 FP); in the text fragment

b2 microglobulina, CEA y CA 19,9 normales, CA

19,9 is the correct span for the last entity (and not

CA, 1 FP); A.S.T is the span selected (for A.S.T., 1

FP); finally, in the context lgM anticore only lgM

has been tagged (1 FP).

Other prominent mismatch between HAD and

AnnotGuide is that of DNA, which is explicitly

14When we indicate this kind of information, mostly us-
ing only FPs, it must be understood that the system made the
choice(s) that the authors judge as correct, although disagree-
ing with HA and/or AnnotGuide.

15On nutrition replacements, see also section 5.3.
16Note, in passing, that these span errors account for 1 TN

also for the evaluation scripts.

included in the AnnotGuide (sects. P2 and O1). It

accounts for 2 FPs.

But perhaps one of the most common discrep-

ancies between human and automatic annotation

has to do with medicaments normally prescribed

together, which have a unique sctid. Examples in-

clude amiloride/hidroclorotiazida (1 FP); and be-

tametasona + calcipotriol (1 FP) in the test set.

This situation was also observed in the t+d cor-

pus fragment (tenofovir + emtricitabina, carbo-

nato cálcico /colecalciferol, lopinavir/ritonavir).

5.3 Inconsistency in HA on the test set as

regards t+d sets

Some inconsistencies between dataset annotations

have turned the authors crazy: NPT (acronym

for ‘total parenteral nutrition, TPN’) is tagged in

the train+dev dataset 15 out of 21 times it oc-

curs17. The common sense of frequency in the

HA of texts has led us to tag it in the background

set. Unluckily, neither NPT nor its expansion have

been tagged in the test dataset. This has also

been the behaviour in HA for ‘parenteral nutrition’

and ‘enteral nutrition’ (and their corresponding

acronyms) in test dataset, since these entities have

not been tagged. We asked the organizers about

this and other entities for which we had doubts,

either because the AnnotGuide didn’t cover their

cases or because the HA didn’t match the recom-

mendations in the AnnotGuide. Woefully, com-

munication with the organizers has not been very

fluent on this respect. All in all, this bad deci-

sion on the part of the authors amounts for 6 FPs

(more than 7.5% of our FPs according to evalua-

tion script).

For other cases, decisions that may be clearly

induced from the tagging of train+dev datasets,

have not been applied in the test corpus fragment.

These include cadenas ligeras (5 times in t+d, 1 FP

in test); enzimas hepáticas (tagged systematically

in t+d, 1 FP); p53 (also tagged in t+d, 1 FP).

Another entity that stands out is hidratos de car-

bono (‘carbohydrates’). It is tagged twice in the

t+d dataset, occurring 4 times in the set (once as

HC). However, although the form carbohidratos

has been annotated twice in the test set, hidratos

de carbono has been not (1 FP).

Moreover, suero (‘Sodium chloride solution’ or

17However, at least one expanded variant of it —nutrición
parenteral, ‘parenteral nutrition’— is never tagged.



‘serum’) deserves its own comment. Both entity

references are tagged in the train+dev datasets (al-

though with the latter meaning it is tagged only 4

out of 12 occurrences). We decided to tag it due to

its relevance. In the test dataset, it occurs 5 times

with the blood material meaning, but it has only

been tagged twice as such (one of them being an

error, since it refers to the former meaning). Our

system tagged all occurrences, but tagged also one

of the instances with the former meaning as serum

(3 FPs).

Finally, there are some inconsistencies within

the same dataset. For example, nutricional agent

Kabiven is tagged as both NORMALIZABLES

(with sctid) and NO NORMALIZABLES in the very

same text. The same happens with another nu-

tritional complement, Cernebit, this time in two

different files. The perfusion solution Isoplasmal

G (with a typo in the datasets —Isoplasmar G)

is tagged as NORMALIZABLES and UNCLEAR.

These examples reveal a vague understanding (or

definition) of criteria as regards fluids and nutri-

tion, as we pointed out at the beginning of this

section.

5.4 Asystematic/incomplete annotation

Some of the entities occurring in the test dataset

have not always been tagged. This is the case

for celulosa (annotated only once but used twice,

1 FP); vimentina (same situation as previous, 1

FP); LDH (tagged 20 times in t+d but not in one

of the files, 1 FP); cimetidina (1 FP); reactantes

de fase aguda (2 FPs; 2 other occurrences were

tagged); anticuerpos antinucleares (human anno-

tators missed 1, considered FP).

5.5 Incorrect sctids

On our refinement work with the system, some in-

correct sctids have emerged. These errors impact

on subtask 2 (some also on subtask 1). A large

sample of them is enumerated below.

ARP (‘actividad de renina plasmática’, ‘plasma

renin activity’, PRA) cannot be linked to sctid for

renina, which happens twice. In the context ‘perfil

de antigenos [sic] extraı́bles del núcleo (ENA)’,

ENA has been tagged with sctid of the antibody

(1 FP). In one of the files, tioflavina is linked to

sctid of tioflavina T, but it could be tioflavina S.

Thus, it should be NO NORMALIZABLE. Harvoni

is ChEBI:85082 and not <null> (1 FP). AcIgM

contra CMV has a wrong sctid (1 FP). HBsAg

has no sctid in the test set; it should be 22290004

(‘Hepatitis B surface antigen’) (1 FP).

There are other incorrect annotations, due to

inadvertent human errors, like biotina tagged

as PROTEINAS or VEB (‘Epstein-Barr virus’)

being annotated when it is not a substance.

Among these mismatches between HA and system

annotation, the most remarkable is the case of

synonyms in active principles. For instance,

the brand name drug Dekapine has been linked

to ‘ácido valproico’ in the former case and to

‘valproato sódico’ in the latter. These terms are

synonymous18, but sadly they don’t share sctid.

Hence, this case also counts as a FP.

A gold standard dataset for any task is very

hard to develop, so a continuous editing of it is

a must19. In this discussion, we have focused on

false positives (FPs) according to the script used

for system evaluation, with the main purpose of

understanding the domain knowledge encoded in

the linguistic conventions (lexical/terminological

items and constructions) used by health profes-

sionals, but also the decisions underlying both the

AnnotGuide and the HA practice.

In this journey to system improvement and au-

thors enlightenment, some inconsistencies, errors,

omissions have come up, as it has been reflected

in this section, so both the guidelines for and the

practice of annotation can also be improved in fu-

ture use scenarios of the clinical case corpus built

and maintained by the shared task organizers.

Our conclusion on this state of affairs is that

some of the inconsistencies spotted in this sec-

tion show that there were not a rational approach

to the annotation of certain entities contained in

the datasets (apart from other errors and/or over-

sights), and, hence, the upper bound of any tag-

ging system is far below the ideal 1.0 F1-score. To

this respect, in very many cases, the authors have

made the wrong choice, but in others they were

guided by analogy or common sense. Maybe a se-

lection founded on probability measures estimated

on training material could have obtained better re-

sults with this specific test dataset. However, in the

18Although, ‘valproato sódico’ is the name used
in the leaflet, as it can be seen in the Span-
ish Medicament Agency, AEMPS, web page
(https://cima.aemps.es/cima/dochtml/p/48828/P_48828.html:
last consulted on 16.07.2019).

19Besides, when the dataset is being used in a shared task,
this refinement process should be available to participants
while the task is open.

https://cima.aemps.es/cima/dochtml/p/ 48828/P_48828.html


end, this cannot be considered as an indication of

a better system performance, since, as it has been

shown, the test dataset used still needs more re-

finement work to be used as the right dataset for

automatic annotation evaluation.

6 Conclusions

With this resource-based system developed for the

PHARMACONER shared task on NER of pharmaco-

logical, chemical and biomedical entities, we have

demonstrated that, having a very limited knowl-

edge of the domain, and, thus, making wrong

choices many times in the creation of resources

for the tasks at hand, but being more flexible with

the matching mechanisms, a simple-design system

can outperform a NER tagger for biomedical enti-

ties based on state-of-the-art artificial neural net-

work technology. Thus, knowledge-based meth-

ods stand on their own merits in task resolution.

But, perhaps most importantly, the other key

point brought to light in this contribution is that a

resource-based approach also favours a more crit-

ical stance on the dataset(s) used to evaluate sys-

tem performance. With these methods, system de-

velopment can go hand in hand with dataset re-

finement in a virtuous circle that let us think that

maybe next time we are planning to add a new

gazetteer or word embedding to our system in

order to try to improve system performance, we

should first look at our data and, like King Mi-

das, turn our Human Annotated Dataset into a true

Gold Standard Dataset.
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